
On-Prem AI Solutions

BENCHMARK REPORT

gpt-oss-20b
Performance Analysis on 1x H100 SXM

MODEL

Organization OpenAI
Parameters 21B
Precision MXFP4

TEST HARDWARE

GPU 1x H100 SXM
VRAM 80GB
Engine vLLM

HIGHLIGHTS

2,168.5
Tok/s Peak Throughput
@ 15 Concurrent Requests

99.2%
Success Rate
Across All Scenarios

62
Concurrent Users
@ 32K Context

January 29, 2026
MillstoneAI.com

https://millstoneai.com

Contents | gpt-oss-20b on 1x H100 SXM 2 / 16

CONTENTS

Table of Contents

Executive Summary 3

Use Case Guidance 4

Performance Analysis 5

System Throughput 5

Per-User Generation Speed 6

Time to First Token 7

Capacity Analysis 8

Code Completion (1K Context) 8

Short-form Chatbot (8K Context) 9

General Chatbot (32K Context) 10

Long Document Processing (64K Context) 11

Automated Coding Assistant (96K Context) 12

Technical Deep Dive 13

Queue Wait Times 13

Per-User Prefill Speed 14

Inter-Token Latency 15

Scaling Efficiency 15

Power & Efficiency 16

Interactive Data Available Online
This report provides a static snapshot of benchmark results. For interactive charts with hover tooltips,
exact data point values, and interpolated metrics, visit the full benchmark page:
MillstoneAI.com/inference-benchmark/gpt-oss-20b-mxfp4-1x-h100-sxm

https://millstoneai.com/inference-benchmark/gpt-oss-20b-mxfp4-1x-h100-sxm

Executive Summary | gpt-oss-20b on 1x H100 SXM 3 / 16

OVERVIEW

Executive Summary
Infrastructure decisions require real performance data. This report measures user-facing performance, showing
how many concurrent users a configuration can support at a given context length before performance
degrades.

This benchmark evaluates gpt-oss-20b (OpenAI, 21B parameters, Mixture-of-Experts) running in MXFP4
precision on 1x H100 SXM (80GB VRAM).

Test parameters: Context lengths from 1K - 128K tokens. Concurrency from 1 - 15 requests. 1024 output tokens
per request. No prompt caching. No speculative decoding. Full-precision KV cache.

Benchmark methodology →

Key Findings

Peak System Throughput 2168.5 tok/s @ 15 concurrent requests, 1K context

TTFT Single Request 21ms (1K context) → 5.0s (128K context)

Generation Speed Single
Request

320.1 tok/s (1K context) → 228.9 tok/s (128K context)

Chatbot Capacity 62 concurrent requests @ 32K context

Throughput Scaling 8.7× from 1 to 15 concurrent requests

Success Rate 99.2% across 13.7K requests

Throughout this report, "concurrent requests" refers to simultaneous active requests. For applications
with natural user pauses (chat interfaces, coding assistants), each request slot typically serves 4–5
active users.

https://millstoneai.com/inference-benchmark-methodology

Use Case Guidance | gpt-oss-20b on 1x H100 SXM 4 / 16

RECOMMENDATIONS

Use Case Guidance
The table below maps this configuration's performance to common deployment scenarios. Capacity limits are
where TTFT or generation speed falls below accepted thresholds for a comfortable user experience. Detailed
charts and analysis for each use case are available in the Capacity Analysis section.

USE CASE
TTFT

THRESHOLD
SPEED

THRESHOLD
ANALYSIS

Code Completion 2s e2e N/A Supports ~76 concurrent requests within accepted
thresholds.

Short-form Chatbot 10s 10 tok/s Supports 125+ concurrent requests with fast responses.
Additional capacity likely available.

General Chatbot 8s 15 tok/s Supports 62 concurrent requests within accepted thresholds.

Long Document
Processing 12s 15 tok/s Supports ~33 concurrent requests within accepted

thresholds.

Automated Coding
Assistant 12s 20 tok/s Supports 11 concurrent requests within accepted thresholds.

The limits shown are conservative. Beyond these points, the system continues functioning with slower response
times that may still be acceptable for your specific use case.

Want to validate your specific configuration? Request a Custom Benchmark →

https://millstoneai.com/work-with-us

Performance Analysis | gpt-oss-20b on 1x H100 SXM 5 / 16

PERFORMANCE

System Throughput
Aggregate token generation across all concurrent requests. Measures output tokens only. Prompt tokens
processed during prefill are excluded.

1K 8K 32K 64K 96K 128K

Context Length

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (t

ok
en

s/
se

c)

1 Req
5 Reqs
10 Reqs
15 Reqs

Average system throughput across 1K - 128K tokens context lengths at 1 - 15 concurrency levels.

CONDITION THROUGHPUT

Peak (1K context, 15 requests) 2168.5 tok/s

32K context, 15 requests 690.6 tok/s

128K context, 15 requests 131.1 tok/s

At peak throughput, this configuration produces approximately 7.8 million tokens per hour. This is relevant for
batch workloads like document processing, synthetic data generation, or offline analysis. Higher concurrency or
shorter contexts can increase this further.

Performance Analysis | gpt-oss-20b on 1x H100 SXM 6 / 16

USER EXPERIENCE

Per-User Generation Speed
Token generation rate experienced by each individual user. This is the speed at which text streams into their
response, also referred to as "decode speed" or "decode throughput." As concurrency increases, per-user
speed decreases since GPU resources are shared across requests.

1K 8K 32K 64K 96K 128K

Context Length

0

50

100

150

200

250

300

G
en

er
at

io
n

Sp
ee

d
(to

ke
ns

/s
ec

)

1 Req
5 Reqs
10 Reqs
15 Reqs

Average per-user generation speed across 1K - 128K tokens context lengths at 1 - 15 concurrency levels.

How Fast is This?

SPEED USER EXPERIENCE

< 15 tok/s Slow; may be slower than reading speed

15–25 tok/s Acceptable; keeps pace with reading

25–50 tok/s Fast; exceeds reading speed

> 50 tok/s Very fast; text appears nearly instantly

At 14.3 tok/s (the lowest measured point: 128K context, 15 concurrent requests), this configuration slows below
fast reading speed in the most demanding scenarios. Single-user performance at 1K context reaches 320.1
tok/s.

Performance Analysis | gpt-oss-20b on 1x H100 SXM 7 / 16

LATENCY

Time to First Token
Time from request submission to first response token. The primary metric for perceived responsiveness. TTFT
has two components:

• Queue wait: Time waiting for GPU availability (increases with concurrency)
• Prefill: Time to process input context (increases with context length)

At low concurrency, prefill dominates. Under load, queue wait takes over. See Technical Analysis for more.

1 5 10 15

Concurrent Requests

1K
8K

32
K

64
K

96
K

12
8K

C
on

te
xt

 L
en

gt
h

<0.1 <0.1 <0.1 <0.1

0.1 0.1 0.2 0.2

0.6 1.3 2.8 4.1

1.7 4.4 8.5 9.6

3.1 8.8 13.2 17.2

5.0 13.7 20.9 23.0

5

10

15

20

TT
FT

 (s
ec

on
ds

)

Average time to first token across 1K - 128K tokens context lengths at 1 - 15 concurrency levels.

How Responsive is This?

TTFT USER EXPERIENCE

< 500ms Feels instant

500ms–2s Feels responsive

2–5s Noticeable but still acceptable

5–10s Feels slow; generally acceptable at higher context lengths

> 10s Can be frustrating; users may retry or abandon

Important note about caching. These benchmarks use fresh context with no caching enabled, representing
worst-case TTFT. In production with caching enabled, only new tokens require processing. For example, a
64K conversation where you add 1K of new context would have a TTFT similar to the 1K results above, not the
64K results. For most real-world use cases where context is built incrementally (chatbots, coding
assistants, multi-turn agents), TTFT with caching enabled would be significantly faster than these results.

Capacity Analysis | gpt-oss-20b on 1x H100 SXM 8 / 16

CAPACITY PLANNING

Capacity Analysis
How many concurrent requests can this configuration handle for different workloads? Each section below
shows performance metrics as concurrency increases at a specific context length. Dashed lines indicate quality
thresholds, the point where user experience degrades below acceptable levels. The "capacity limit" is the tested
or estimated point where the first threshold is reached.

Code Completion (1K Context)
Inline code suggestions in IDEs, like autocomplete. Responsiveness is critical. This test generates 128 output
tokens per request (vs. 1024 elsewhere) to match typical autocomplete length. The key metric is end-to-end
latency, not TTFT.

Threshold: End-to-end latency < 2,000ms

0 15 30 45 60 75 90

Concurrent Requests

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (t

ok
/s

)

500

1000

1500

2000

2500

E2
E

La
te

nc
y

(m
s)

Throughput
E2E Latency
2000 ms

Average end-to-end latency and throughput at 1K context. Dashed line indicates quality threshold.

METRIC @ 1 request @ 76 requests @ 100 requests

End-to-end latency 421ms ~2002ms (threshold
exceeded) 2705ms (threshold exceeded)

Throughput 320 tok/s ~73 tok/s 61 tok/s

Capacity limit: ~76 concurrent requests

At 76 concurrent requests, end-to-end latency reaches ~2002ms, just above the 2,000ms threshold.

Capacity Analysis | gpt-oss-20b on 1x H100 SXM 9 / 16

Short-form Chatbot (8K Context)
Quick conversational exchanges: customer support queries, simple Q&A, single-turn requests. 8K context
accommodates a few back-and-forth messages plus system prompt. User expectations are more forgiving for
these scenarios. 10+ tok/s is acceptable for reading streamed responses from a support chatbot.

Thresholds: TTFT < 10s, generation speed > 10 tok/s

0 15 30 45 60 75 90 105 120

Concurrent Requests

50

100

150

200

250

300

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

0.5

1.0

1.5

2.0

2.5

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT

Average per-user generation speed and TTFT at 8K context.

METRIC @ 1 request @ 75 requests @ 125 requests

TTFT 0.1s 2.3s 2.3s

Generation speed 304 tok/s 57 tok/s 37 tok/s

Capacity limit: 125+ concurrent requests

At 125 concurrent requests, TTFT is 2.3 seconds and generation speed is 37 tok/s, both well within acceptable
bounds. Capacity likely extends higher.

Capacity Analysis | gpt-oss-20b on 1x H100 SXM 10 / 16

General Chatbot (32K Context)
ChatGPT-style chatbot. If you're deploying a multi-turn conversational chatbot, this benchmark shows how
many concurrent requests you can support while matching acceptable responsiveness. 32K context matches
ChatGPT's limit.

Thresholds: TTFT < 8s, generation speed > 15 tok/s

0 10 20 30 40 50 60 70 80

Concurrent Requests

50

100

150

200

250

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

0

2

4

6

8

10

12

14

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT
15 tok/s
8 sec

Average per-user generation speed and TTFT at 32K context. Dashed lines indicate quality thresholds.

METRIC @ 1 request @ 62 requests @ 78 requests

TTFT 0.6s 7.3s 13.6s (threshold exceeded)

Generation speed 285 tok/s 18 tok/s 17 tok/s

Capacity limit: 62 concurrent requests

At 62 concurrent requests, TTFT reaches 7.3 seconds, just under the 8-second threshold. Generation speed at
this concurrency is 18 tok/s, above the 15 tok/s minimum.

Note about caching: Most chatbot users build context incrementally over a conversation. With caching
properly configured, TTFT is dramatically reduced since only new tokens require processing. These
results represent worst-case TTFT where all context is processed at once.

Capacity Analysis | gpt-oss-20b on 1x H100 SXM 11 / 16

Long Document Processing (64K Context)
Summarizing reports, extracting data from contracts, analyzing lengthy documents. 64K tokens handles
documents up to roughly 125-160 pages depending on formatting and density.

Users typically tolerate higher latency for document processing since they understand large inputs require more
processing time. However, generation speed still needs to stay at or above reading speed.

Thresholds: TTFT < 12s, generation speed > 15 tok/s

0 4 8 12 16 20 24 28 32 36

Concurrent Requests

0

50

100

150

200

250

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

2

4

6

8

10

12

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT
15 tok/s
12 sec

Average per-user generation speed and TTFT at 64K context. Dashed lines indicate quality thresholds.

METRIC @ 1 request @ 33 requests @ 36 requests

TTFT 1.7s ~11.7s 11.6s

Generation speed 260 tok/s ~15 tok/s 12 tok/s (below threshold)

Capacity limit: ~33 concurrent requests

At 33 concurrent requests, TTFT reaches ~11.7 seconds, just under the 12-second threshold. Generation speed
at this concurrency is ~15 tok/s, right at the minimum.

Capacity Analysis | gpt-oss-20b on 1x H100 SXM 12 / 16

Automated Coding Assistant (96K Context)
Agentic coding workloads: AI assistants that read large portions of a codebase to answer questions, refactor
code, or implement features. 96K tokens handles roughly 8,000-9,000 lines of code, enough for significant
repository context.

Agentic workflows chain multiple LLM calls (tool use, retrieval, iterative refinement). With caching properly
configured, context persists between requests and only new tokens require processing, dramatically reducing
TTFT for each step. These results represent worst-case TTFT where all context is processed at once.

Thresholds: TTFT < 12s, generation speed > 20 tok/s

2 4 6 8 10 12 14

Concurrent Requests

50

100

150

200

250

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

4

6

8

10

12

14

16

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT
20 tok/s
12 sec

Average per-user generation speed and TTFT at 96K context. Dashed lines indicate quality thresholds.

METRIC @ 1 request @ 11 requests @ 15 requests

TTFT 3.1s 12.2s (threshold exceeded) 17.2s (threshold exceeded)

Generation speed 243 tok/s 27 tok/s 21 tok/s

Capacity limit: 11 concurrent requests

At 11 concurrent requests, TTFT reaches 12.2 seconds, just above the 12-second threshold. Generation speed at
this concurrency is 27 tok/s, above the 20 tok/s minimum.

Technical Deep Dive | gpt-oss-20b on 1x H100 SXM 13 / 16

DEEP DIVE

Technical Analysis
Infrastructure-level metrics that explain user-facing performance. Queue depth, prefill throughput, token
generation latency, and scaling efficiency across load conditions. These help diagnose bottlenecks and validate
infrastructure decisions.

Queue Wait Times
Time a request waits for GPU availability before processing begins. At low concurrency, queue wait is near zero.
As load increases, requests queue and wait times grow.

Queue wait is included in TTFT. Breaking it out separately helps identify whether latency is caused by GPU
saturation (high queue wait) or context processing (high prefill time).

1 5 10 15

Concurrent Requests

1K
8K

32
K

64
K

96
K

12
8K

C
on

te
xt

 L
en

gt
h

0 0 0 0

0 0 0 0

0 0.4 1.7 3.1

0 2.3 6.2 7.6

0 4.9 9.7 13.8

0 8.3 15.3 18.6 0

5

10

15

W
ai

t T
im

e
(s

ec
on

ds
)

Average queue wait time across 1K - 128K tokens context at 1 - 15 concurrent requests.

At single concurrency, queue wait is effectively zero regardless of context length. At 15 concurrent requests
with 128K context, queue wait reaches 18.6 seconds. Rising queue times signal GPU saturation, meaning
requests are waiting for resources rather than being processed immediately.

Interpretation: Queue wait time and prefill time are measured independently and may not sum exactly to
TTFT. Under heavy load, chunked prefill and preemptions can cause these metrics to overlap,
sometimes resulting in queue wait + prefill exceeding TTFT. Use queue wait for capacity planning and
identifying bottlenecks. Use TTFT for actual user wait time before streaming begins.

Technical Deep Dive | gpt-oss-20b on 1x H100 SXM 14 / 16

Per-User Prefill Speed
Rate at which the model processes input context before generating output. Prefill speed determines the
non-queue portion of TTFT. Higher prefill speeds mean faster time-to-first-token at a given context length.

1K 8K 32K 64K 96K 128K

Context Length

20000

30000

40000

50000

60000

Pr
ef

ill
Sp

ee
d

(to
ke

ns
/s

ec
)

1 Req
5 Reqs
10 Reqs
15 Reqs

Average per-user prefill speed across 1K - 128K tokens context at 1 - 15 concurrent requests.

CONCURRENT REQUESTS PEAKS AT PEAK SPEED

1 8K context 57,960 tok/s

5 8K context 59,257 tok/s

10 8K context 59,293 tok/s

15 8K context 44,104 tok/s

Prefill speed peaks at a certain context length and then declines as additional context increases computational
overhead. This peak can reflect GPU saturation (compute or memory bandwidth fully utilized) or engine
configuration such as chunked prefill limits, which cap tokens processed per forward pass to maintain
responsiveness under load. On the chart, this appears as lines that peak before reaching the longest context.

Technical Deep Dive | gpt-oss-20b on 1x H100 SXM 15 / 16

Inter-Token Latency
Time between consecutive tokens during generation. Determines the smoothness of responses. Lower latency
produces more fluid output. ITL helps diagnose the underlying token-level behavior.

1K 8K 32K 64K 96K 128K

Context Length

0

20

40

60

80

In
te

r-
To

ke
n

La
te

nc
y

(m
s)

1 Req
5 Reqs
10 Reqs
15 Reqs

Average inter-token latency across 1K - 128K tokens context at 1 - 15 concurrent requests.

At single-user short context, inter-token latency is imperceptible (3ms). The highest latency observed was
78ms at 128K context with 15 concurrent requests, still smooth for most users.

Scaling Efficiency
Percentage of ideal linear scaling achieved as concurrency increases. 100% efficiency means doubling
concurrent requests doubles total throughput with no per-user degradation. Real-world efficiency is always
lower due to shared GPU resources.

1K 8K 32K 64K 96K 128K

Context Length

0

20

40

60

80

100

Sc
al

in
g

Ef
fic

ie
nc

y
(%

)

5 Reqs
10 Reqs
15 Reqs

Scaling efficiency across 1K - 128K tokens context at 1 - 15 concurrent requests.

Efficiency remains high at low concurrency where GPU resources can serve requests without contention. At
higher concurrency, efficiency drops as requests compete for shared resources. High efficiency at your target
concurrency indicates headroom for growth. Sharply dropping efficiency signals diminishing returns.

Power & Efficiency | gpt-oss-20b on 1x H100 SXM 16 / 16

EFFICIENCY

Power Consumption
GPU power draw under varying load conditions. Relevant for operational cost estimation, cooling requirements,
and data center power budgeting.

1K 8K 32K 64K 96K 128K

Context Length

300

400

500

600

Po
w

er
 (W

at
ts

)

1 Req
5 Reqs
10 Reqs
15 Reqs

Average GPU power draw across 1K - 128K tokens context at 1 - 15 concurrent requests.

Power consumption scales with both context length and concurrency. The highest power draw observed was
618W at 128K context with 15 concurrent requests, costing approximately $0.06/hour at $0.10/kWh. Higher
concurrency or sustained load beyond tested conditions may increase power consumption further. For
infrastructure planning, budget for peak power draw.

Need Help Deciding?
Not sure what configuration you need? Our team can help you identify the right model, hardware, and
deployment strategy for your specific use case.

Schedule a Conversation →

Additional data available on request: full percentile breakdowns (P50–P99) and GPU metrics.

https://millstoneai.com/work-with-us

