
On-Prem AI Solutions

BENCHMARK REPORT

GLM-4.7-Flash
Performance Analysis on 1x H200 SXM

MODEL

Organization Z.ai
Parameters 30B
Precision BF16

TEST HARDWARE

GPU 1x H200 SXM
VRAM 141GB
Engine vLLM

HIGHLIGHTS

458.3
Tok/s Peak Throughput
@ 4 Concurrent Requests

100.0%
Success Rate
Across All Scenarios

12+
Concurrent Users
@ 32K Context

February 01, 2026
MillstoneAI.com

https://millstoneai.com

Contents | GLM-4.7-Flash on 1x H200 SXM 2 / 16

CONTENTS

Table of Contents

Executive Summary 3

Use Case Guidance 4

Performance Analysis 5

System Throughput 5

Per-User Generation Speed 6

Time to First Token 7

Capacity Analysis 8

Code Completion (1K Context) 8

Short-form Chatbot (8K Context) 9

General Chatbot (32K Context) 10

Long Document Processing (64K Context) 11

Automated Coding Assistant (96K Context) 12

Technical Deep Dive 13

Queue Wait Times 13

Per-User Prefill Speed 14

Inter-Token Latency 15

Scaling Efficiency 15

Power & Efficiency 16

Interactive Data Available Online
This report provides a static snapshot of benchmark results. For interactive charts with hover tooltips,
exact data point values, and interpolated metrics, visit the full benchmark page:
MillstoneAI.com/inference-benchmark/glm-4.7-flash-bf16-1x-h200-sxm

https://millstoneai.com/inference-benchmark/glm-4.7-flash-bf16-1x-h200-sxm

Executive Summary | GLM-4.7-Flash on 1x H200 SXM 3 / 16

OVERVIEW

Executive Summary
Infrastructure decisions require real performance data. This report measures user-facing performance, showing
how many concurrent users a configuration can support at a given context length before performance
degrades.

This benchmark evaluates GLM-4.7-Flash (Z.ai, 30B parameters, Mixture-of-Experts) running in BF16 precision
on 1x H200 SXM (141GB VRAM).

Test parameters: Context lengths from 1K - 200K tokens. Concurrency from 1 - 4 requests. 1024 output tokens
per request. No prompt caching. No speculative decoding. Full-precision KV cache.

Benchmark methodology →

Key Findings

Peak System Throughput 458.3 tok/s @ 4 concurrent requests, 1K context

TTFT Single Request 66ms (1K context) → 35.9s (200K context)

Generation Speed Single
Request

196.7 tok/s (1K context) → 116.3 tok/s (200K context)

Chatbot Capacity 12+ concurrent requests @ 32K context

Throughput Scaling 2.9× from 1 to 4 concurrent requests

Success Rate 100.0% across 4.7K requests

Throughout this report, "concurrent requests" refers to simultaneous active requests. For applications
with natural user pauses (chat interfaces, coding assistants), each request slot typically serves 4–5
active users.

https://millstoneai.com/inference-benchmark-methodology

Use Case Guidance | GLM-4.7-Flash on 1x H200 SXM 4 / 16

RECOMMENDATIONS

Use Case Guidance
The table below maps this configuration's performance to common deployment scenarios. Capacity limits are
where TTFT or generation speed falls below accepted thresholds for a comfortable user experience. Detailed
charts and analysis for each use case are available in the Capacity Analysis section.

USE CASE
TTFT

THRESHOLD
SPEED

THRESHOLD
ANALYSIS

Code Completion 2s e2e N/A Supports 24 concurrent requests within accepted thresholds.

Short-form Chatbot 10s 10 tok/s Supports 125+ concurrent requests with fast responses.
Additional capacity likely available.

General Chatbot 8s 15 tok/s Supports 12+ concurrent requests with fluid conversations.
Significant additional capacity likely available.

Long Document
Processing 12s 15 tok/s Supports 4 concurrent requests within accepted thresholds.

Automated Coding
Assistant 12s 20 tok/s

Best suited for single-user agentic workflows. For team
environments, enable prompt caching or consider a smaller
model.

The limits shown are conservative. Beyond these points, the system continues functioning with slower response
times that may still be acceptable for your specific use case.

Want to validate your specific configuration? Request a Custom Benchmark →

https://millstoneai.com/work-with-us

Performance Analysis | GLM-4.7-Flash on 1x H200 SXM 5 / 16

PERFORMANCE

System Throughput
Aggregate token generation across all concurrent requests. Measures output tokens only. Prompt tokens
processed during prefill are excluded.

1K 8K 32K 64K 96K 128K 200K

Context Length

0

100

200

300

400

Th
ro

ug
hp

ut
 (t

ok
en

s/
se

c)

1 Req
2 Reqs
3 Reqs
4 Reqs

Average system throughput across 1K - 200K tokens context lengths at 1 - 4 concurrency levels.

CONDITION THROUGHPUT

Peak (1K context, 4 requests) 458.3 tok/s

32K context, 4 requests 221.4 tok/s

200K context, 4 requests 18.8 tok/s

At peak throughput, this configuration produces approximately 1.6 million tokens per hour. This is relevant for
batch workloads like document processing, synthetic data generation, or offline analysis. Higher concurrency or
shorter contexts can increase this further.

Performance Analysis | GLM-4.7-Flash on 1x H200 SXM 6 / 16

USER EXPERIENCE

Per-User Generation Speed
Token generation rate experienced by each individual user. This is the speed at which text streams into their
response, also referred to as "decode speed" or "decode throughput." As concurrency increases, per-user
speed decreases since GPU resources are shared across requests.

1K 8K 32K 64K 96K 128K 200K

Context Length

25

50

75

100

125

150

175

200

G
en

er
at

io
n

Sp
ee

d
(to

ke
ns

/s
ec

)

1 Req
2 Reqs
3 Reqs
4 Reqs

Average per-user generation speed across 1K - 200K tokens context lengths at 1 - 4 concurrency levels.

How Fast is This?

SPEED USER EXPERIENCE

< 15 tok/s Slow; may be slower than reading speed

15–25 tok/s Acceptable; keeps pace with reading

25–50 tok/s Fast; exceeds reading speed

> 50 tok/s Very fast; text appears nearly instantly

At 15.2 tok/s (the lowest measured point: 200K context, 4 concurrent requests), this configuration stays at
acceptable speeds across all tested scenarios. Single-user performance at 1K context reaches 196.7 tok/s.

Performance Analysis | GLM-4.7-Flash on 1x H200 SXM 7 / 16

LATENCY

Time to First Token
Time from request submission to first response token. The primary metric for perceived responsiveness. TTFT
has two components:

• Queue wait: Time waiting for GPU availability (increases with concurrency)
• Prefill: Time to process input context (increases with context length)

At low concurrency, prefill dominates. Under load, queue wait takes over. See Technical Analysis for more.

1 2 3 4

Concurrent Requests

1K

8K

32K

64K

96K

128K

200K

C
on

te
xt

 L
en

gt
h

<0.1 <0.1 <0.1 <0.1

0.2 0.3 0.4 0.5

1.6 2.3 3.0 3.9

4.8 7.1 9.5 11.6

9.7 14.4 18.9 23.6

16.1 24.1 30.7 31.2

35.9 53.8 67.2 82.4

20

40

60

80

TT
FT

 (s
ec

on
ds

)

Average time to first token across 1K - 200K tokens context lengths at 1 - 4 concurrency levels.

How Responsive is This?

TTFT USER EXPERIENCE

< 500ms Feels instant

500ms–2s Feels responsive

2–5s Noticeable but still acceptable

5–10s Feels slow; generally acceptable at higher context lengths

> 10s Can be frustrating; users may retry or abandon

Important note about caching. These benchmarks use fresh context with no caching enabled, representing
worst-case TTFT. In production with caching enabled, only new tokens require processing. For example, a
64K conversation where you add 1K of new context would have a TTFT similar to the 1K results above, not the
64K results. For most real-world use cases where context is built incrementally (chatbots, coding
assistants, multi-turn agents), TTFT with caching enabled would be significantly faster than these results.

Capacity Analysis | GLM-4.7-Flash on 1x H200 SXM 8 / 16

CAPACITY PLANNING

Capacity Analysis
How many concurrent requests can this configuration handle for different workloads? Each section below
shows performance metrics as concurrency increases at a specific context length. Dashed lines indicate quality
thresholds, the point where user experience degrades below acceptable levels. The "capacity limit" is the tested
or estimated point where the first threshold is reached.

Code Completion (1K Context)
Inline code suggestions in IDEs, like autocomplete. Responsiveness is critical. This test generates 128 output
tokens per request (vs. 1024 elsewhere) to match typical autocomplete length. The key metric is end-to-end
latency, not TTFT.

Threshold: End-to-end latency < 2,000ms

0 4 8 12 16 20 24 28

Concurrent Requests

80

100

120

140

160

180

200

Th
ro

ug
hp

ut
 (t

ok
/s

)

800

1000

1200

1400

1600

1800

2000

E2
E

La
te

nc
y

(m
s)

Throughput
E2E Latency
2000 ms

Average end-to-end latency and throughput at 1K context. Dashed line indicates quality threshold.

METRIC @ 1 request @ 24 requests @ 30 requests

End-to-end latency 717ms 2016ms (threshold
exceeded) 2051ms (threshold exceeded)

Throughput 197 tok/s 69 tok/s 69 tok/s

Capacity limit: 24 concurrent requests

At 24 concurrent requests, end-to-end latency reaches 2016ms, just above the 2,000ms threshold.

Capacity Analysis | GLM-4.7-Flash on 1x H200 SXM 9 / 16

Short-form Chatbot (8K Context)
Quick conversational exchanges: customer support queries, simple Q&A, single-turn requests. 8K context
accommodates a few back-and-forth messages plus system prompt. User expectations are more forgiving for
these scenarios. 10+ tok/s is acceptable for reading streamed responses from a support chatbot.

Thresholds: TTFT < 10s, generation speed > 10 tok/s

0 15 30 45 60 75 90 105 120

Concurrent Requests

25

50

75

100

125

150

175

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

0

1

2

3

4

5

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT

Average per-user generation speed and TTFT at 8K context.

METRIC @ 1 request @ 75 requests @ 125 requests

TTFT 0.2s 4.2s 5.7s

Generation speed 184 tok/s 26 tok/s 23 tok/s

Capacity limit: 125+ concurrent requests

At 125 concurrent requests, TTFT is 5.7 seconds and generation speed is 23 tok/s, both well within acceptable
bounds. Capacity likely extends higher.

Capacity Analysis | GLM-4.7-Flash on 1x H200 SXM 10 / 16

General Chatbot (32K Context)
ChatGPT-style chatbot. If you're deploying a multi-turn conversational chatbot, this benchmark shows how
many concurrent requests you can support while matching acceptable responsiveness. 32K context matches
ChatGPT's limit.

Thresholds: TTFT < 8s, generation speed > 15 tok/s

2 4 6 8 10 12

Concurrent Requests

50

75

100

125

150

175

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

2

3

4

5

6

7

8

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT
8 sec

Average per-user generation speed and TTFT at 32K context.

METRIC @ 1 request @ 5 requests @ 12 requests

TTFT 1.6s 4.3s 6.7s

Generation speed 172 tok/s 78 tok/s 42 tok/s

Capacity limit: 12+ concurrent requests

At 12 concurrent requests, TTFT is 6.7 seconds and generation speed is 42 tok/s, both well within acceptable
bounds. The configuration handles this workload comfortably within tested limits; capacity likely extends higher.

Note about caching: Most chatbot users build context incrementally over a conversation. With caching
properly configured, TTFT is dramatically reduced since only new tokens require processing. These
results represent worst-case TTFT where all context is processed at once.

Capacity Analysis | GLM-4.7-Flash on 1x H200 SXM 11 / 16

Long Document Processing (64K Context)
Summarizing reports, extracting data from contracts, analyzing lengthy documents. 64K tokens handles
documents up to roughly 125-160 pages depending on formatting and density.

Users typically tolerate higher latency for document processing since they understand large inputs require more
processing time. However, generation speed still needs to stay at or above reading speed.

Thresholds: TTFT < 12s, generation speed > 15 tok/s

1 2 3 4 5

Concurrent Requests

60

80

100

120

140

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

6

8

10

12

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT
12 sec

Average per-user generation speed and TTFT at 64K context. Dashed lines indicate quality thresholds.

METRIC @ 1 request @ 4 requests @ 5 requests

TTFT 4.8s 11.6s 13.5s (threshold exceeded)

Generation speed 148 tok/s 66 tok/s 48 tok/s

Capacity limit: 4 concurrent requests

At 4 concurrent requests, TTFT reaches 11.6 seconds, just under the 12-second threshold. Generation speed at
this concurrency is 66 tok/s, above the 15 tok/s minimum.

Capacity Analysis | GLM-4.7-Flash on 1x H200 SXM 12 / 16

Automated Coding Assistant (96K Context)
Agentic coding workloads: AI assistants that read large portions of a codebase to answer questions, refactor
code, or implement features. 96K tokens handles roughly 8,000-9,000 lines of code, enough for significant
repository context.

Agentic workflows chain multiple LLM calls (tool use, retrieval, iterative refinement). With caching properly
configured, context persists between requests and only new tokens require processing, dramatically reducing
TTFT for each step. These results represent worst-case TTFT where all context is processed at once.

Thresholds: TTFT < 12s, generation speed > 20 tok/s

1 2 3 4

Concurrent Requests

40

60

80

100

120

G
en

er
at

io
n

Sp
ee

d
(to

k/
s)

10

12

14

16

18

20

22

24

TT
FT

 (s
ec

on
ds

)

Generation Speed
TTFT
12 sec

Average per-user generation speed and TTFT at 96K context. Dashed lines indicate quality thresholds.

METRIC @ 1 request @ 2 requests @ 4 requests

TTFT 9.7s 14.4s (threshold exceeded) 23.6s (threshold exceeded)

Generation speed 122 tok/s 84 tok/s 40 tok/s

Capacity limit: 1 request

This configuration handles single-user agentic coding workloads with 9.7s TTFT and 122 tok/s generation
speed, acceptable for individual use.

Technical Deep Dive | GLM-4.7-Flash on 1x H200 SXM 13 / 16

DEEP DIVE

Technical Analysis
Infrastructure-level metrics that explain user-facing performance. Queue depth, prefill throughput, token
generation latency, and scaling efficiency across load conditions. These help diagnose bottlenecks and validate
infrastructure decisions.

Queue Wait Times
Time a request waits for GPU availability before processing begins. At low concurrency, queue wait is near zero.
As load increases, requests queue and wait times grow.

Queue wait is included in TTFT. Breaking it out separately helps identify whether latency is caused by GPU
saturation (high queue wait) or context processing (high prefill time).

1 2 3 4

Concurrent Requests

1K

8K

32K

64K

96K

128K

200K

C
on

te
xt

 L
en

gt
h

0 0 0 0

0 0 0 0

0 0.3 0.8 1.6

0 1.6 4.1 5.9

0 3.7 8.8 13.5

0 6.7 14.8 15.0

0 16.5 33.0 51.7 0

10

20

30

40

50

W
ai

t T
im

e
(s

ec
on

ds
)

Average queue wait time across 1K - 200K tokens context at 1 - 4 concurrent requests.

At single concurrency, queue wait is effectively zero regardless of context length. At 4 concurrent requests
with 200K context, queue wait reaches 51.7 seconds. Rising queue times signal GPU saturation, meaning
requests are waiting for resources rather than being processed immediately.

Interpretation: Queue wait time and prefill time are measured independently and may not sum exactly to
TTFT. Under heavy load, chunked prefill and preemptions can cause these metrics to overlap,
sometimes resulting in queue wait + prefill exceeding TTFT. Use queue wait for capacity planning and
identifying bottlenecks. Use TTFT for actual user wait time before streaming begins.

Technical Deep Dive | GLM-4.7-Flash on 1x H200 SXM 14 / 16

Per-User Prefill Speed
Rate at which the model processes input context before generating output. Prefill speed determines the
non-queue portion of TTFT. Higher prefill speeds mean faster time-to-first-token at a given context length.

1K 8K 32K 64K 96K 128K 200K

Context Length

5000

10000

15000

20000

25000

30000

35000

Pr
ef

ill
Sp

ee
d

(to
ke

ns
/s

ec
)

1 Req
2 Reqs
3 Reqs
4 Reqs

Average per-user prefill speed across 1K - 200K tokens context at 1 - 4 concurrent requests.

CONCURRENT REQUESTS PEAKS AT PEAK SPEED

1 8K context 33,639 tok/s

2 8K context 29,109 tok/s

3 8K context 24,591 tok/s

4 8K context 22,391 tok/s

Prefill speed peaks at a certain context length and then declines as additional context increases computational
overhead. This peak can reflect GPU saturation (compute or memory bandwidth fully utilized) or engine
configuration such as chunked prefill limits, which cap tokens processed per forward pass to maintain
responsiveness under load. On the chart, this appears as lines that peak before reaching the longest context.

Technical Deep Dive | GLM-4.7-Flash on 1x H200 SXM 15 / 16

Inter-Token Latency
Time between consecutive tokens during generation. Determines the smoothness of responses. Lower latency
produces more fluid output. ITL helps diagnose the underlying token-level behavior.

1K 8K 32K 64K 96K 128K 200K

Context Length

20

40

60

80

100

120

140

In
te

r-
To

ke
n

La
te

nc
y

(m
s)

1 Req
2 Reqs
3 Reqs
4 Reqs

Average inter-token latency across 1K - 200K tokens context at 1 - 4 concurrent requests.

At single-user short context, inter-token latency is imperceptible (8ms). The highest latency observed was
135ms at 200K context with 4 concurrent requests, where individual tokens become visible as they stream.

Scaling Efficiency
Percentage of ideal linear scaling achieved as concurrency increases. 100% efficiency means doubling
concurrent requests doubles total throughput with no per-user degradation. Real-world efficiency is always
lower due to shared GPU resources.

1K 8K 32K 64K 96K 128K 200K

Context Length

0

20

40

60

80

100

Sc
al

in
g

Ef
fic

ie
nc

y
(%

)

2 Reqs
3 Reqs
4 Reqs

Scaling efficiency across 1K - 200K tokens context at 1 - 4 concurrent requests.

Efficiency remains high at low concurrency where GPU resources can serve requests without contention. At
higher concurrency, efficiency drops as requests compete for shared resources. High efficiency at your target
concurrency indicates headroom for growth. Sharply dropping efficiency signals diminishing returns.

Power & Efficiency | GLM-4.7-Flash on 1x H200 SXM 16 / 16

EFFICIENCY

Power Consumption
GPU power draw under varying load conditions. Relevant for operational cost estimation, cooling requirements,
and data center power budgeting.

1K 8K 32K 64K 96K 128K 200K

Context Length

300

400

500

600

Po
w

er
 (W

at
ts

)

1 Req
2 Reqs
3 Reqs
4 Reqs

Average GPU power draw across 1K - 200K tokens context at 1 - 4 concurrent requests.

Power consumption scales with both context length and concurrency. The highest power draw observed was
628W at 128K context with 4 concurrent requests, costing approximately $0.06/hour at $0.10/kWh. Higher
concurrency or sustained load beyond tested conditions may increase power consumption further. For
infrastructure planning, budget for peak power draw.

Need Help Deciding?
Not sure what configuration you need? Our team can help you identify the right model, hardware, and
deployment strategy for your specific use case.

Schedule a Conversation →

Additional data available on request: full percentile breakdowns (P50–P99) and GPU metrics.

https://millstoneai.com/work-with-us

